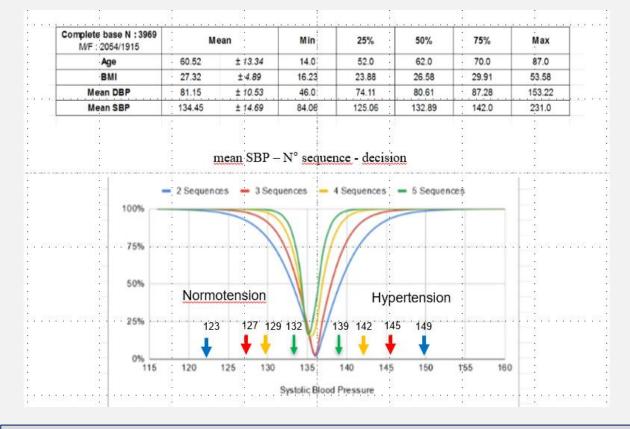
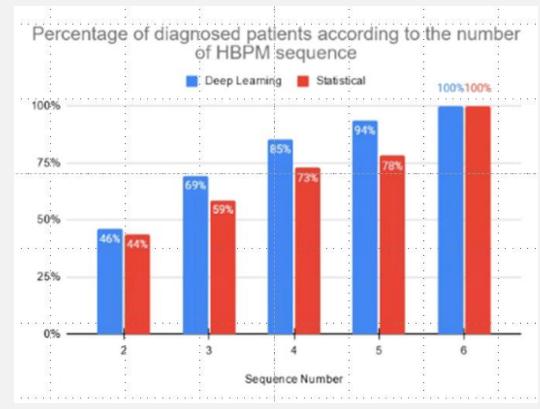


April 11-14, 2021 www.hypertension2021.org




Contribution of artificial intelligence to the decision-making process when performing a home blood pressure monitoring Paul de Buyer ², Roland Asmar ¹, Robert Boualit ³, Xavier Girerd ¹ ¹ Fondation de Recherche sur l'HTA, 2 Polynom, 3 Solutions Santé Digitale, Paris ¹, Boulogne-sur-Seine², Clermont-Ferrand³, France

Methods

From an anonymized database of self-measurements performed in hypertensive patients followed in a hypertensive specialist center, artificial intelligence algorithms were used (logistic regression, gradient boosting tree, neural network) and compared with usual statistical methods. The self-measurement protocol consisted of 6 sequences over 3 days with 3 measurements per sequence, and 2 sequences per day. The mean of the 18 measures was used as a baseline to categorize the decision-making process with the thresholds SBP \geq 135 or DBP \geq 85 to define hypertension status.

Results

Conclusions

Artificial intelligence algorithms are more efficient than conventional statistical methods to categorize the blood pressure status of a subject after only 2 sequences of a Home Blood Pressure Monitoring. From this hospital database it appears that 4 sequences performed over 2 days are sufficient to confirm or deny the diagnosis of hypertension in more than 80% of subjects.